Crouching to fit in: the energetic cost of locomotion in tunnels.
نویسندگان
چکیده
Animals that are specialized for a particular habitat or mode of locomotion often demonstrate locomotor efficiency in a focal environment when compared to a generalist species. However, measurements of these focal habitats or behaviors are often difficult or impossible to do in the field. In this study, the energetics and kinematics of simulated tunnel locomotion by two unrelated semi-fossorial mammals, the ferret and degu, were analyzed using open-flow respirometry and digital video. Animals were trained to move inside of normal (unconstrained, overground locomotion) and height-decreased (simulated tunnel, adjusted to tolerance limits for each species) Plexiglas chambers that were mounted flush onto a treadmill. Both absolute and relative tunnel performance differed between the species; ferrets tolerated a tunnel height that forced them to crouch at nearly 25% lower hip height than in an unconstrained condition, whereas degus would not perform on the treadmill past a ∼9% reduction in hip height. Both ferrets and degus exhibited significantly higher metabolic rates and cost of transport (CoT) values when moving in the tunnel condition relative to overground locomotion. When comparing CoT values across small (<10 kg) mammals, ferrets demonstrated a lower than predicted metabolic cost during both tunnel and terrestrial locomotion, whereas degus were very close to the line of best fit. Although tunnel locomotion requires a more striking change in posture for ferrets, ferrets are more efficient locomotors in both conditions than mammals of similar mass.
منابع مشابه
The crouching of the shrew: Mechanical consequences of limb posture in small mammals
An important trend in the early evolution of mammals was the shift from a sprawling stance, whereby the legs are held in a more abducted position, to a parasagittal one, in which the legs extend more downward. After that transition, many mammals shifted from a crouching stance to a more upright one. It is hypothesized that one consequence of these transitions was a decrease in the total mechani...
متن کاملThe energetic cost of limbless locomotion.
The net energetic cost of terrestrial locomotion by the snake Coluber constrictor, moving by lateral undulation, is equivalent to the net energetic cost of running by limbed animals (arthropods, lizards, birds, and mammals) of similar size. In contrast to lateral undulation and limbed locomotion, concertina locomotion by Coluber is more energetically expensive. The findings do not support the w...
متن کاملOptimal Trajectory Generation for a Robotic Worm via Parameterization by B-Spline Curves
In this paper we intend to generate some set of optimal trajectories according to the number of control points has been applied for parameterizing those using B-spline curves. The trajectories are used to generate an optimal locomotion gait in a crawling worm-like robot. Due to gait design considerations it is desired to minimize the required torques in a cycle of gait. Similar to caterpillars,...
متن کاملEffects of perch diameter and incline on the kinematics, performance and modes of arboreal locomotion of corn snakes (Elaphe guttata).
Animals moving through arboreal habitats face several functional challenges, including fitting onto and moving on cylindrical branches with variable diameters and inclines. In contrast to lizards and primates, the arboreal locomotion of snakes is poorly understood, despite numerous snake species being arboreal. We quantified the kinematics and performance of corn snakes (Elaphe guttata) moving ...
متن کاملScaling of muscle fibres and locomotion.
To reconcile the scaling of the mechanics and energetics of locomotion to recent data on the scaling of the mechanics of muscle fibres, I have extended the theory of Taylor and colleagues that the energetic cost of locomotion is determined by the cost of generating force by the fibres. By assuming (1) that the cost of generating force in a fibre is proportional to V(max) (maximum velocity of sh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 219 Pt 21 شماره
صفحات -
تاریخ انتشار 2016